Biosphere


Biosphere
• Food, from crops and domestic animals, providing human metabolic requirements. • Food, for all forms of life which live as interdependent species in a community and form food chains in nature on which man is dependent. • Energy needs: Biomass fuel wood collected from forests and plantations, along with other forms of organic matter, used as a source of energy. • Timber and other construction materials. This is the relatively thin layer on the earth in which life can exist. Within it the air, water, rocks and soil and the living creatures, form structural and functional ecological units, which together can be considered as one giant global living system, that of our Earth itself. Within this framework, those characterised by broadly similar geography and climate, as well as communities of plant and animal life can be divided for convenience into different biogeographical realms. These occur on different continents. Within these, smaller biogeographical units can be identified on the basis of structural differences and functional aspects into distinctive recognizable ecosystems, which give a distinctive character to a landscape or waterscape. Their easily visible and identifiable characteristics can be described at different scales such as those of a country, a state, a district or even an individual valley, hill range, river or lake. The simplest of these ecosystems to understand is a pond. It can be used as a model to understand the nature of any other ecosystem and to appreciate the changes over time that are seen in any ecosystem. The structural features of a pond include its size, depth and the quality of its water. The periphery, the shallow part and the deep part of the pond, each provide specific conditions for different plant and animal communities. Functionally, a variety of cycles such as the amount of water within the pond at different times of the year, the quantity of nutrients flowing into the pond from the surrounding terrestrial ecosystem, all affect the ‘nature’ of the pond. Natural cycles between the spheres: All four spheres are closely inter-linked systems and are dependent on the integrity of each other. Disturbing one of these spheres in our environment affects all the others. The linkages between them are mainly in the form of cycles. For instance, the atmosphere, hydrosphere and lithosphere are all connected through the hydrological cycle. Water evaporated from the hydrosphere (the seas and freshwater ecosystems), forms clouds in the atmosphere. This becomes rain, which provides moisture for the lithosphere, on which life depends. The rain also acts on rocks as an agent of erosion and over millions of years has created soil, on which plant life grows. Atmospheric movements in the form of wind, break down rocks into soil. The most sensitive and complex linkages are those between the atmosphere, the hydrosphere and the lithosphere on the one hand, with the millions of living organisms in the biosphere on the other. All living organisms which exist on earth live only in the relatively thin layer of the lithosphere and hydrosphere that is present on the surface of land and in the water. The biosphere which they form has countless associations with different parts of the three other ‘spheres’. It is therefore essential to understand the interrelationships of the separate entities soil, water, air and living organisms, and to appreciate the value of preserving intact ecosystems as a whole 
RENEWABLE AND NON-RENEWABLE RESOURCES 
Ecosystems act as resource producers and processors. Solar energy is the main driving force of ecological systems, providing energy for the growth of plants in forests, grasslands and aquatic ecosystems. A forest recycles its plant material slowly by continuously returning its dead material, leaves, branches, etc. to the soil. Grasslands recycle material much faster than forests as the grass dries up after the rains are over every year. All the aquatic ecosystems are also solar energy dependent and have cycles of growth when plant life spreads and aquatic animals breed. The sun also drives the water cycle. Our food comes from both natural and agricultural ecosystems. Traditional agricultural ecosystems that depended on rainfall have been modified in recent times to produce more and more food by the addition of extra chemicals and water from irrigation systems but are still dependent on solar energy for the growth of crops. Moreover modern agriculture creates a variety of environmental problems, which ultimately lead to the formation of unproductive land. These include irrigation, which leads to the development of saline soil, and the use of artificial fertilizers eventually ruin soil quality, and pesticides, which are a health hazard for humans as well as destroying components vital to the long-term health of agricultural ecosystems. To manufacture consumer products, industry requires raw materials from nature, including water, minerals and power. During the manufacturing process, the gases, chemicals and waste products pollute our environment, unless the industry is carefully managed to clean up this mess. Natural resources and associated problems: The unequal consumption of natural resources: A major part of natural resources are today consumed in the technologically advanced or ‘developed’ world, usually termed ‘the North’. The ‘developing nations’ of ‘the South’, including India and China, also over use many resources because of their greater human population. However, the consumption of resources per capita (per individual) of the developed countries is up to 50 times greater than in most developing countries. Advanced countries produce over 75% of global industrial waste and greenhouse gases. Energy from fossil fuels is consumed in relatively much greater quantities in developed countries. Their per capita consumption of food too is much greater as well as their waste of enormous quantities of food and other products, such as packaging material, used in the food industry. The USA for example with just 4% ofthe world’s population consumes about 25% of the world’s resources. Producing animal food for human consumption requires more land than growing crops. Thus countries that are highly dependent on non-vegetarian diets need much larger areas for pastureland than those where the people are mainly vegetarian. Planning Landuse: Land itself is a major resource, needed for food production, animal husbandry, industry, and for our growing human settlements. These forms of intensive landuse are frequently extended at the cost of ‘wild lands’, our remaining forests, grasslands, wetlands and deserts. Thus it is essential to evolve a rational land-use policy that examines how much land must be made available for different purposes and where it must be situated. For instance, there are usually alternate sites at which industrial complexes or dams can be built, but a natural wilderness cannot be recreated artificially. Scientists today believe that at least 10 percent of land and water bodies of each ecosystem must be kept as wilderness for the longterm needs of protecting nature and natural resources. Land as a resource is now under serious pressure due to an increasing ‘land hunger’ - to produce sufficient quantities of food for an exploding human population. It is also affected by degradation due to misuse. Land and water resources are polluted by industrial waste and rural and urban sewage. They are increasingly being diverted for short-term economic gains to agriculture and industry. Natural wetlands of great value are being drained for agriculture and other purposes. Semi-arid land is being irrigated and overused. The most damaging change in landuse is demonstrated by the rapidity with which forests have vanished during recent times, both in India and in the rest of the world. Forests provide us with a variety of services. These include processes such as maintaining oxygen levels in the atmosphere, removal of carbon dioxide, control over water regimes, and slowing down erosion and also produce products such as food, fuel, timber, fodder, medicinal plants, etc. In the long term, the loss of these is far greater than the short-term gains produced by converting forested lands to other uses. The need for sustainable lifestyles: The quality of human life and the quality of ecosystems on earth are indicators of the sustainable use of resources. There are clear indicators of sustainable lifestyles in human life. • Increased longevity • An increase in knowledge • An enhancement of income. These three together are known as the ‘Human development index’. The quality of the ecosystems have indicators that are more difficult to assess. • A stabilized population. • The long term conservation of biodiversity. • The careful long-term use of natural resources. • The prevention of degradation and pollution of the environment.

Non-renewable resources :

These are minerals that have been formed in the lithosphere over millions of years and constitute a closed system. These non-renewable resources, once used, remain on earth in a different form and, unless recycled, become waste material. Non-renewable resources include fossil fuels such as oil and coal, which if extracted at the present rate, will soon be totally used up. The end products of fossil fuels are in the form of heat and mechanical energy and chemical compounds, which cannot be reconstituted as a resource. 2.2.3 Renewable resources Though water and biological living resources are considered renewable. They are in fact renewable only within certain limits. They are linked to natural cycles such as the water cycle. • Fresh water (even after being used) is evaporated by the sun’s energy, forms water vapour and is reformed in clouds and falls to earth as rain. However, water sources can be overused or wasted to such an extent that they locally run dry. Water sources can be so heavily polluted by sewage and toxic substances that it becomes impossible to use the water. • Forests, once destroyed take thousands of years to regrow into fully developed natural ecosystems with their full complement of species. Forests thus can be said to behave like non-renewable resources if overused. • Fish are today being over-harvested until the catch has become a fraction of the original resource and the fish are incapable of breeding successfully to replenish the population. • The output of agricultural land if mismanaged drops drastically. • When the population of a species of plant or animal is reduced by human activities, until it cannot reproduce fast enough to maintain a viable number, the species becomes extinct. • Many species are probably becoming extinct without us even knowing, and other linked species are affected by their loss.

No comments

Powered by Blogger.